Heteromeric assembly of GABA(B)R1 and GABA(B)R2 receptor subunits inhibits Ca(2+) current in sympathetic neurons.

نویسندگان

  • A K Filippov
  • A Couve
  • M N Pangalos
  • F S Walsh
  • D A Brown
  • S J Moss
چکیده

Neuronal GABA(B) receptors regulate calcium and potassium currents via G-protein-coupled mechanisms and play a critical role in long-term inhibition of synaptic transmission in the CNS. Recent studies have demonstrated that assembly of GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits into functional heterodimers is required for coupling to potassium channels in heterologous systems. However whether heterodimerization is required for the coupling of GABA(B) receptors to effector systems in neurons remains to be established. To address this issue, we have studied the coupling of recombinant GABA(B) receptors to endogenous Ca(2+) channels in superior cervical ganglion (SCG) neurons using nuclear microinjection to introduce both sense and antisense expression constructs. Patch-clamp recording from neurons injected with both GABA(B)R1a/1b and GABA(B)R2 cDNAs or with GABA(B)R2 alone produced marked baclofen-mediated inhibition of Ca(2+) channel currents via a pertussis toxin-sensitive mechanism. The actions of baclofen were blocked by CGP62349, a specific GABA(B) antagonist, and were voltage dependent. Interestingly, SCGs were found to express abundantly GABA(B)R1 but not GABA(B)R2 at the protein level. To determine whether heterodimerization of GABA(B)R1 and GABA(B)R2 subunits was required for Ca(2+) inhibition, the GABA(B)R2 expression construct was microinjected with a GABA(B)R1 antisense construct. This resulted in a dramatic decrease in the levels of the endogenous GABA(B)R1 protein and a marked reduction in the inhibitory effects of baclofen on Ca(2+) currents. Therefore our results suggest that in neurons heteromeric assemblies of GABA(B)R1 and GABA(B)R2 are essential to mediate GABAergic inhibition of Ca(2+) channel currents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marlin-1, a novel RNA-binding protein associates with GABA receptors.

GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B...

متن کامل

GABA(B) receptors in the centromedian/parafascicular thalamic nuclear complex: an ultrastructural analysis of GABA(B)R1 and GABA(B)R2 in the monkey thalamus.

Strong gamma-aminobutyric acid type B (GABA(B)) receptor binding has been shown throughout the thalamus, but the distribution of the two GABA(B) receptor subunits, GABA(B) receptor subunit 1 (GABA(B)R1) and GABA(B) receptor subunit 2 (GABA(B)R2), remains poorly characterized. In primates, the caudal intralaminar nuclei, centromedian and parafascicular (CM/PF), are an integral part of basal gang...

متن کامل

An electron microscope immunocytochemical study of GABA(B) R2 receptors in the monkey basal ganglia: a comparative analysis with GABA(B) R1 receptor distribution.

Functional gamma-aminobutyric acid (GABA)(B) receptors are heterodimers made up of GABA(B) R1 and GABA(B) R2 subunits. The subcellular localization of GABA(B) R2 receptors remains poorly known in the central nervous system. Therefore, we performed an ultrastructural analysis of the localization of GABA(B) R2 receptor immunoreactivity in the monkey basal ganglia. Furthermore, to characterize bet...

متن کامل

Positive Regulation by GABABR1 Subunit of Leptin Expression through Gene Transactivation in Adipocytes

BACKGROUND The view that γ-aminobutyric acid (GABA) plays a functional role in non-neuronal tissues, in addition to an inhibitory neurotransmitter role in the mammalian central nervous system, is prevailing, while little attention has been paid to GABAergic signaling machineries expressed by adipocytes to date. In this study, we attempted to demonstrate the possible functional expression of GAB...

متن کامل

Phospho-Dependent Functional Modulation of GABAB Receptors by the Metabolic Sensor AMP-Dependent Protein Kinase

GABA(B) receptors are heterodimeric G protein-coupled receptors composed of R1 and R2 subunits that mediate slow synaptic inhibition in the brain by activating inwardly rectifying K(+) channels (GIRKs) and inhibiting Ca(2+) channels. We demonstrate here that GABA(B) receptors are intimately associated with 5'AMP-dependent protein kinase (AMPK). AMPK acts as a metabolic sensor that is potently a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2000